g(x) = 1/x + x³ - √x. tentukan turunan pertamanya
Jawaban:
[tex]g'(x) = \frac{ - 2 - {x}^{ \frac{3}{2} } + 6 {x}^{4} }{2 {x}^{ \frac{3}{2} } \sqrt{x} } [/tex]
Jawaban Alternatif:
[tex]g'(x) = ( - \frac{1}{{x}^{2} }) + (3 {x}^{2} ) - ( \frac{1}{2 \sqrt{x}} )[/tex]
Penjelasan dengan langkah-langkah:
[tex]g(x) = \frac{1}{x} + {x}^{3} - \sqrt{x} [/tex]
[tex]g(x) = {x}^{ - 1} + {x}^{3} - {x}^{ \frac{1}{2} } [/tex]
[tex]g'(x) = ( {- 1x}^{ - 1 - 1} ) + ( {3x}^{3 - 2} ) - ({ \frac{1}{2} x}^{ \frac{1}{2} - 1} )[/tex]
[tex]g'(x) = ( - \frac{1}{{x}^{2} }) + (3 {x}^{2} ) - ( \frac{1}{2 \sqrt{x}} )[/tex]
[tex]g'(x) = \frac{ - 2 - {x}^{ \frac{3}{2} } + 6 {x}^{4} }{2 {x}^{ \frac{3}{2} } \sqrt{x} } [/tex]
[answer.2.content]